English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Atomic relaxation around defects in magnetically disordered materials computed by atomic spin constraints within an efficient Lagrange formalism

MPS-Authors
/persons/resource/persons252574

Hegde,  Omkar
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons181234

Grabowski,  Maximilian
Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universit Ìat Bochum, 44801 Bochum, Germany;

/persons/resource/persons231342

Waseda,  Osamu
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125180

Hickel,  Tilmann
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125143

Freysoldt,  Christoph
Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125293

Neugebauer,  Jörg
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

Phys. Rev. B 102, 144101 (2020).pdf
(Supplementary material), 921KB

Citation

Hegde, O., Grabowski, M., Zhang, X., Waseda, O., Hickel, T., Freysoldt, C., et al. (2020). Atomic relaxation around defects in magnetically disordered materials computed by atomic spin constraints within an efficient Lagrange formalism. Physical Review B, 102(14): 144101. doi:10.1103/PhysRevB.102.144101.


Cite as: http://hdl.handle.net/21.11116/0000-0007-67FC-A
Abstract
Lattice and magnetic degrees of freedom are strongly coupled in magnetic materials. We propose a consistent first-principles framework to explore the joint configurational space. For this, we define atomic spin moments from the projector augmented-wave formalism of density-functional theory and control them via Lagrangian constraints. We demonstrate our approach for vacancy formation and migration in collinear paramagnetic bcc iron by implementing a relaxation scheme based on spin-space averaged forces (SSA relaxation). Based on these results we discuss the impact of the magnetic state on vacancy formation energies, migration barriers, and relaxations. © 2020 authors. Published by the American Physical Society.