Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

High-Index Faceted RuCo Nanoscrews for Water Electrosplitting

MPG-Autoren
/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhu, T., Huang, J., Huang, B., Zhang, N., Liu, S., Yao, Q., et al. (2020). High-Index Faceted RuCo Nanoscrews for Water Electrosplitting. Advanced Energy Materials, 2002860, pp. 1-10. doi:10.1002/aenm.202002860.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-7C9A-1
Zusammenfassung
Shape control has realized huge success for developing efficient Pd/Pt-based nanocatalysts, but the control of Ru-based nanocrystals remains a formidable challenge due to the inherent anisotropy in hexagonal closed-packed nanocrystals. Herein, a class of unique RuCo nanoscrews (NSs) for water electrosplitting is successfully synthesized with rough surfaces and the exposure of steps and edges. Those high-index faceted RuCo NSs show superior performance for overall water electrosplitting, where a low cell voltage of 1.524 V (@ 10 mA cm(-2)) and excellent stability for more than 20 h (@ 10 mA cm(-2)) for overall water electrosplitting in 1 m KOH is achieved. The enhanced performance of RuCo NSs is due to the optimization of the binding energy with the intermediate species and the reduced energy barrier of water dissociation. Density functional theory calculations reveal that the RuCo NS structure intrinsically endows various ridges and edges, which create low coordinated Ru- and Co-sites. These active Ru- and Co-sites present high efficiencies in electronic exchange and transfer between adsorbing O species and nearby lattice sites, guaranteeing the high H2O-splitting activities. This present work opens up a new strategy for creating high-performance electrocatalysts for water splitting.