Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Revisiting the Mössbauer Isomer Shifts of the FeMoco Cluster of Nitrogenase and the Cofactor Charge

MPG-Autoren
/persons/resource/persons237766

Bjornsson,  Ragnar
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;
Science Institute, University of Iceland;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons237560

DeBeer,  Serena
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;
Department of Chemistry and Chemical Biology, Cornell University;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bjornsson, R., Neese, F., & DeBeer, S. (2017). Revisiting the Mössbauer Isomer Shifts of the FeMoco Cluster of Nitrogenase and the Cofactor Charge. Inorganic Chemistry, 56(3), 1470-1477. doi:10.1021/acs.inorgchem.6b02540.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-6F16-5
Zusammenfassung
Despite decades of research, the structure–activity relationship of nitrogenase is still not understood. Only recently was the full molecular structure of the FeMo cofactor (FeMoco) revealed, but the charge and metal oxidation states of FeMoco have been controversial. With the recent identification of the interstitial atom as a carbide and the more recent revised oxidation-state assignment of the molybdenum atom as Mo(III), here we revisit the Mössbauer properties of FeMoco. By a detailed error analysis of density functional theory-computed isomer shifts and computing isomer shifts relative to the P-cluster, we find that only the charge of [MoFe7S9C]1– fits the experimental data. In view of the recent Mo(III) identification, the charge of [MoFe7S9C]1– corresponds to a formal oxidation-state assignment of Mo(III)3Fe(II)4Fe(III), although due to spin delocalization, the physical oxidation state distribution might also be interpreted as Mo(III)1Fe(II)4Fe(2.5)2Fe(III), according to a localized orbital analysis of the MS = 3/2 broken symmetry solution. These results can be reconciled with the recent spatially resolved anomalous dispersion study by Einsle et al. that suggests the Mo(III)3Fe(II)4Fe(III) distribution, if some spin localization (either through interactions with the protein environment or through vibronic coupling) were to take place.