English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Treating Subvalence Correlation Effects in Domain Based Pair Natural Orbital Coupled Cluster Calculations: An Out-of-the-Box Approach

MPS-Authors
/persons/resource/persons216804

Bistoni,  Giovanni
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons237690

Riplinger,  Christoph
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons125031

Auer,  Alexander A.
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bistoni, G., Riplinger, C., Minenkov, Y., Cavallo, L., Auer, A. A., & Neese, F. (2017). Treating Subvalence Correlation Effects in Domain Based Pair Natural Orbital Coupled Cluster Calculations: An Out-of-the-Box Approach. Journal of Chemical Theory and Computation, 13(7), 3220-3227. doi:10.1021/acs.jctc.7b00352.


Cite as: https://hdl.handle.net/21.11116/0000-0007-6F38-F
Abstract
The validity of the main approximations used in canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) in standard chemical applications is discussed. In particular, we investigate the dependence of the results on the number of electrons included in the correlation treatment in frozen-core (FC) calculations and on the main threshold governing the accuracy of DLPNO all-electron (AE) calculations. Initially, scalar relativistic orbital energies for the ground state of the atoms from Li to Rn in the periodic table are calculated. An energy criterion is used for determining the orbitals that can be excluded from the correlation treatment in FC coupled cluster calculations without significant loss of accuracy. The heterolytic dissociation energy (HDE) of a series of metal compounds (LiF, NaF, AlF3, CaF2, CuF, GaF3, YF3, AgF, InF3, HfF4, and AuF) is calculated at the canonical CCSD(T) level, and the dependence of the results on the number of correlated electrons is investigated. Although for many of the studied reactions subvalence correlation effects contribute significantly to the HDE, the use of an energy criterion permits a conservative definition of the size of the core, allowing FC calculations to be performed in a black-box fashion while retaining chemical accuracy. A comparison of the CCSD and the DLPNO-CCSD methods in describing the core–core, core–valence, and valence–valence components of the correlation energy is given. It is found that more conservative thresholds must be used for electron pairs containing at least one core electron in order to achieve high accuracy in AE DLPNO-CCSD calculations relative to FC calculations. With the new settings, the DLPNO-CCSD method reproduces canonical CCSD results in both AE and FC calculations with the same accuracy.