English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Enhanced Formic Acid Oxidation over SnO2-decorated Pd Nanocubes

MPS-Authors
/persons/resource/persons227610

Rettenmaier,  Clara
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons227595

Aran Ais,  Rosa
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons227619

Timoshenko,  Janis
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons238922

Rizo,  Ruben
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons227603

Jeon,  Hyosang
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21771

Kühl,  Stefanie
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons244748

Chee,  See Wee
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons214068

Bergmann,  Arno
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22020

Roldan Cuenya,  Beatriz
Interface Science, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)

acscatal.0c03212.pdf
(Publisher version), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Rettenmaier, C., Aran Ais, R., Timoshenko, J., Rizo, R., Jeon, H., Kühl, S., et al. (2020). Enhanced Formic Acid Oxidation over SnO2-decorated Pd Nanocubes. ACS Catalysis, 10(24), 14540-14551. doi:10.1021/acscatal.0c03212.


Cite as: http://hdl.handle.net/21.11116/0000-0007-7F81-9
Abstract
The formic acid oxidation reaction (FAOR) is one of the key reactions that can be used at the anode of low-temperature liquid fuel cells. To allow the knowledge-driven development of improved catalysts, it is necessary to deeply understand the fundamental aspects of the FAOR, which can be ideally achieved by investigating highly active model catalysts. Here, we studied SnO2-decorated Pd nanocubes (NCs) exhibiting excellent electrocatalytic performance for formic acid oxidation in acidic medium with a SnO2 promotion that boosts the catalytic activity by a factor of 5.8, compared to pure Pd NCs, exhibiting values of 2.46 A mg–1Pd for SnO2@Pd NCs versus 0.42 A mg–1Pd for the Pd NCs and a 100 mV lower peak potential. By using ex situ, quasi in situ, and operando spectroscopic and microscopic methods (namely, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption fine-structure spectroscopy), we identified that the initially well-defined SnO2-decorated Pd nanocubes maintain their structure and composition throughout FAOR. In situ Fourier-transformed infrared spectroscopy revealed a weaker CO adsorption site in the case of the SnO2-decorated Pd NCs, compared to the monometallic Pd NCs, enabling a bifunctional reaction mechanism. Therein, SnO2 provides oxygen species to the Pd surface at low overpotentials, promoting the oxidation of the poisoning CO intermediate and, thus, improving the catalytic performance of Pd. Our SnOx-decorated Pd nanocubes allowed deeper insight into the mechanism of FAOR and hold promise for possible applications in direct formic acid fuel cells.