English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Design of sealable custom-shaped cell mimicries based on self-assembled monolayers on CYTOP polymer

MPS-Authors
/persons/resource/persons215483

Eto,  Hiro
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons127954

Franquelim,  Henri G.
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons217931

Glock,  Philipp
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons127952

Khmelinskaia,  Alena
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

Kai,  Lei
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons197087

Heymann,  Michael
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons15815

Schwille,  Petra
Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)

acsami.9b05073.pdf
(Publisher version), 4MB

Supplementary Material (public)

am9b05073_si_001.pdf
(Supplementary material), 782KB

am9b05073_si_002.avi
(Supplementary material), 734KB

Citation

Eto, H., Soga, N., Franquelim, H. G., Glock, P., Khmelinskaia, A., Kai, L., et al. (2019). Design of sealable custom-shaped cell mimicries based on self-assembled monolayers on CYTOP polymer. ACS Applied Materials and Interfaces, 11(24), 21372-21380. doi:10.1021/acsami.9b05073.


Cite as: http://hdl.handle.net/21.11116/0000-0007-D7A4-D
Abstract
In bottom-up synthetic biology, one of the major methodological challenges is to provide reaction spaces that mimic biological systems with regard to topology and surface functionality. Of particular interest are cell- or organelle-shaped membrane compartments, as many protein functions unfold at lipid interfaces. However, shaping artificial cell systems using materials with non-intrusive physicochemical properties, while maintaining flexible lipid interfaces relevant to the reconstituted protein systems, is not straightforward. Herein, we develop micropatterned chambers from CYTOP, a less commonly used polymer with good chemical resistance and a refractive index matching that of water. By forming a self-assembled lipid monolayer on the polymer surface, we dramatically increased the biocompatibility of CYTOP-fabricated systems. The phospholipid interface provides an excellent passivation layer to prevent protein adhesion to the hydrophobic surface, and we succeeded in cell-free protein synthesis inside the chambers. Importantly, the chambers could be sealed after loading by a lipid monolayer, providing a novel platform to study encapsulated systems. We successfully reconstituted pole-to-pole oscillations of the Escherichia coli MinDE system, which responds dramatically to compartment geometry. Furthermore, we present a simplified fabrication of our artificial cell compartments via replica molding, making it a readily accessible technique for standard cleanroom facilities.