日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

成果報告書

Euclidean TSP in Narrow Strips

MPS-Authors
/persons/resource/persons252857

Kisfaludi-Bak,  Sándor
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

arXiv:2003.09948.pdf
(プレプリント), 2MB

付随資料 (公開)
There is no public supplementary material available
引用

Alkema, H., de Berg, M., & Kisfaludi-Bak, S. (2020). Euclidean TSP in Narrow Strips. Retrieved from https://arxiv.org/abs/2003.09948.


引用: https://hdl.handle.net/21.11116/0000-0007-77A3-B
要旨
We investigate how the complexity of Euclidean TSP for point sets $P$ inside
the strip $(-\infty,+\infty)\times [0,\delta]$ depends on the strip width
$\delta$. We obtain two main results. First, for the case where the points have
distinct integer $x$-coordinates, we prove that a shortest bitonic tour (which
can be computed in $O(n\log^2 n)$ time using an existing algorithm) is
guaranteed to be a shortest tour overall when $\delta\leq 2\sqrt{2}$, a bound
which is best possible. Second, we present an algorithm that is fixed-parameter
tractable with respect to $\delta$. More precisely, our algorithm has running
time $2^{O(\sqrt{\delta})} n^2$ for sparse point sets, where each
$1\times\delta$ rectangle inside the strip contains $O(1)$ points. For random
point sets, where the points are chosen uniformly at random from the
rectangle~$[0,n]\times [0,\delta]$, it has an expected running time of
$2^{O(\sqrt{\delta})} n^2 + O(n^3)$.