English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A realistic in silico model for structure/function studies of molybdenum–copper CO dehydrogenase

MPS-Authors
/persons/resource/persons237685

Retegan,  Marius
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rokhsana, D., Large, T. A. G., Dienst, M. C., Retegan, M., & Neese, F. (2016). A realistic in silico model for structure/function studies of molybdenum–copper CO dehydrogenase. Journal of Biological Inorganic Chemistry, 21(4), 491-499. doi:10.1007/s00775-016-1359-6.


Cite as: http://hdl.handle.net/21.11116/0000-0007-84D1-7
Abstract
CO dehydrogenase (CODH) is an environmentally crucial bacterial enzyme that oxidizes CO to CO2 at a Mo–Cu active site. Despite the close to atomic resolution structure (1.1 Å), significant uncertainties have remained with regard to the protonation state of the water-derived equatorial ligand coordinated at the Mo-center, as well as the nature of intermediates formed during the catalytic cycle. To address the protonation state of the equatorial ligand, we have developed a realistic in silico QM model (~179 atoms) containing structurally essential residues surrounding the active site. Using our QM model, we examined each plausible combination of redox states (MoVI–CuI, MoV–CuII, MoV–CuI, and MoIV–CuI) and Mo-coordinated equatorial ligands (O2−, OH, H2O), as well as the effects of second-sphere residues surrounding the active site. Herein, we present a refined computational model for the Mo(VI) state in which Glu763 acts as an active site base, leading to a MoO2-like core and a protonated Glu763. Calculated structural and spectroscopic data (hyperfine couplings) are in support of a MoO2-like core in agreement with XRD data. The calculated two-electron reduction potential (E = −467 mV vs. SHE) is in reasonable agreement with the experimental value (E = −558 mV vs. SHE) for the redox couple comprising an equatorial oxo ligand and protonated Glu763 in the MoVI–CuI state and an equatorial water in the MoIV–CuI state. We also suggest a potential role of second-sphere residues (e.g., Glu763, Phe390) based on geometric changes observed upon exclusion of these residues in the most plausible oxidized states.