Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Emergent Yo-yo Movement of Nuclei Driven by Cytoskeletal Remodeling in Pseudo-synchronous Mitotic Cycles

MPG-Autoren
/persons/resource/persons253152

Mohr,  Stephan
Max Planck Research Group Biological Physics and Morphogenesis, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons199622

Alim,  Karen
Max Planck Research Group Biological Physics and Morphogenesis, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lv, Z., Rosenbaum, J., Mohr, S., Zhang, X., Kong, D., Preiß, H., et al. (2020). The Emergent Yo-yo Movement of Nuclei Driven by Cytoskeletal Remodeling in Pseudo-synchronous Mitotic Cycles. Current Biology, 30, 2564-2573.e5. doi:10.1016/j.cub.2020.04.078.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-811C-8
Zusammenfassung
Many aspects in tissue morphogenesis are attributed to a collective behavior of the participating cells. Yet, the mechanism for emergence of dynamic tissue behavior is not well understood. Here, we report that the “yo-yo”-like nuclear movement in the Drosophila syncytial embryo displays emergent features indicative of collective behavior. Following mitosis, the array of nuclei moves away from the wave front by several nuclear diameters only to return to its starting position about 5 min later. Based on experimental manipulations and numerical simulations, we find that the ensemble of elongating and isotropically oriented spindles, rather than individual spindles, is the main driving force for anisotropic nuclear movement. ELMO-dependent F-actin restricts the time for the forward movement and ELMO- and dia-dependent F-actin is essential for the return movement. Our study provides insights into how the interactions among the cytoskeleton as individual elements lead to collective movement of the nuclear array on a macroscopic scale.