English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Predictability in natural images determines V1 firing rates and synchronization: A deep neural network approach

MPS-Authors

Lazar,  A.
Neurophysiology Department, Max Planck Institute for Brain Research, Max Planck Society;

Barnes,  W.
Neurophysiology Department, Max Planck Institute for Brain Research, Max Planck Society;

Klon-Lipok,  J.
Neurophysiology Department, Max Planck Institute for Brain Research, Max Planck Society;

Shapcott,  K. A.
Neurophysiology Department, Max Planck Institute for Brain Research, Max Planck Society;

Singer,  W.
Neurophysiology Department, Max Planck Institute for Brain Research, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Uran, C., Peter, A., Lazar, A., Barnes, W., Klon-Lipok, J., Shapcott, K. A., et al. (2020). Predictability in natural images determines V1 firing rates and synchronization: A deep neural network approach. bioRxiv.


Cite as: http://hdl.handle.net/21.11116/0000-0007-81CE-F
Abstract
There is no abstract available