English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Antibodies against synthetic peptides used to determine the topology and site of glycosylation of the cGMP-gated channel from bovine rod photoreceptors

MPS-Authors
/persons/resource/persons253200

Wohlfahrt,  Paulus
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137691

Haase,  Winfried
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons252599

Cook,  Neil J.
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wohlfahrt, P., Haase, W., Molday, R. S., & Cook, N. J. (1992). Antibodies against synthetic peptides used to determine the topology and site of glycosylation of the cGMP-gated channel from bovine rod photoreceptors. The Journal of Biological Chemistry, 267(1), 644-648.


Cite as: http://hdl.handle.net/21.11116/0000-0007-835C-E
Abstract
Peptides corresponding to amino acids 321-339 (peptide GS21) and 416-431 (peptide GS31) of the cGMP-gated channel from bovine rod photoreceptors were synthesized and used as antigens for the preparation of polyclonal antibodies. After affinity purification, both antipeptide antibodies were found to bind specifically to the channel protein after Western blotting, but only the antibody against GS21 gave satisfactory results on enzyme-linked immunosorbent assay and electron microscopy. Using immunocytochemistry, we were able to localize amino acids 321-339 to the extracellular side of the rod photoreceptor plasma membrane. By synthesizing heptapeptides corresponding to amino acids 324-330 (peptide GS2s) and 420-426 (peptide GS3s), we were able to affinity purify antibodies specific for two N-glycosylation consensus sites in the channel protein. As assessed by Western blotting, antibodies against GS3s were found to bind to both the glycosylated and deglycosylated channel proteins, whereas antibodies against GS2s only bound to the channel protein after enzymatic deglycosylation. Together, these results allow the refinement of folding models for the cGMP-gated channel and implicate Asn-327 as being the sole site of N-glycosylation.