English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

High pressure phase of Ba2FeS3: An antiferromagnet with one-dimensional spin chains

MPS-Authors
/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126881

Tjeng,  Liu Hao
Liu Hao Tjeng, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Duan, L., Zhang, J., Wang, X., Zhao, Z., Xiao, C., Li, X., et al. (2020). High pressure phase of Ba2FeS3: An antiferromagnet with one-dimensional spin chains. Journal of Alloys and Compounds, 1-8. doi:10.1016/j.jallcom.2020.157839.


Cite as: http://hdl.handle.net/21.11116/0000-0007-8971-F
Abstract
In this work, we report on the discovery of the high-pressure phase of Ba2FeS3 with quasi one-dimensional (1D) spin chains, which was synthesized under high-pressure and high-temperature conditions. A systematic study was carried out via structural, transport, magnetic and thermodynamic measurements. The high-pressure phase of Ba2FeS3 (denoted by Ba2FeS3 (HP)) crystallizes in a K2AgI3-typed orthorhombic structure with the space group of Pnma (62) and the lattice parameters of a = 8.6831 (1) Å, b = 4.2973 (1) Å, and c = 17.0254 (2) Å, respectively, which consists of chains of corner-sharing FeS4 tetrahedra along the b axis. Ba2FeS3 (HP) undergoes a long-range antiferromagnetic transition at TN ∼56 K, above which the magnetic susceptibility curve exhibits a round hump behavior with the maximum temperature Tmax ∼110 K. In addition, the intrachain coupling Jintra is about −18 K obtained by using the Wagner-Friedberg model. The specific heat data suggest that the total magnetic entropy change ΔS caused by the long-range ordering transition is only ∼20% of the expected value for a S = 2 system. For comparison, the properties of K2CuCl3-typed Ba2FeS3 with similar quasi 1D spin chains were presented as well. Our results indicate that both compounds exhibit a typical feature expected for compounds with 1D spin chains. © 2020 Elsevier B.V.