English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study

MPS-Authors
/persons/resource/persons237823

Mondal,  Bhaskar
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons216845

Ye,  Shengfa
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mondal, B., Neese, F., & Ye, S. (2015). Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study. Inorganic Chemistry, 54(15), 7192-7198. doi:10.1021/acs.inorgchem.5b00469.


Cite as: https://hdl.handle.net/21.11116/0000-0007-8952-2
Abstract
The development of efficient catalysts with base metals for CO2 hydrogenation has always been a major thrust of interest. A series of experimental and theoretical work has revealed that the catalytic cycle typically involves two key steps, namely, base-promoted heterolytic H2 splitting and hydride transfer to CO2, either of which can be the rate-determining step (RDS) of the entire reaction. To explore the determining factor for the nature of RDS, we present herein a comparative mechanistic investigation on CO2 hydrogenation mediated by [M(H)(η2-H2)(PP3Ph)]n+ (M = Fe(II), Ru(II), and Co(III); PP3Ph = tris(2-(diphenylphosphino)phenyl)phosphine) type complexes. In order to construct reliable free energy profiles, we used highly correlated wave function based ab initio methods of the coupled cluster type alongside the standard density functional theory. Our calculations demonstrate that the hydricity of the metal–hydride intermediate generated by H2 splitting dictates the nature of the RDS for the Fe(II) and Co(III) systems, while the RDS for the Ru(II) catalyst appears to be ambiguous. CO2 hydrogenation catalyzed by the Fe(II) complex that possesses moderate hydricity traverses an H2-splitting RDS, whereas the RDS for the high-hydricity Co(III) species is found to be the hydride transfer. Thus, our findings suggest that hydricity can be used as a practical guide in future catalyst design. Enhancing the electron-accepting ability of low-hydricity catalysts is likely to improve their catalytic performance, while increasing the electron-donating ability of high-hydricity complexes may speed up CO2 conversion. Moreover, we also established the active roles of base NEt3 in directing the heterolytic H2 splitting and assisting product release through the formation of an acid–base complex.