English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Finding the Reactive Electron in Paramagnetic Systems: A Critical Evaluation of Accuracies for EPR Spectroscopy and Density Functional Theory Using 1,3,5-Triphenyl Verdazyl Radical as a Testcase

MPS-Authors
/persons/resource/persons237762

Barilone,  Jessica L.
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons216842

van Gastel,  Maurice
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Barilone, J. L., Neese, F., & van Gastel, M. (2015). Finding the Reactive Electron in Paramagnetic Systems: A Critical Evaluation of Accuracies for EPR Spectroscopy and Density Functional Theory Using 1,3,5-Triphenyl Verdazyl Radical as a Testcase. Applied Magnetic Resonance, 46(2), 117-139. doi:10.1007/s00723-014-0627-2.


Cite as: http://hdl.handle.net/21.11116/0000-0007-897F-1
Abstract
One of the biggest challenges in studying catalytic reactions is characterizing intermediate states and identifying reaction pathways. Oftentimes, intermediate states with unpaired electrons are formed which provide an opportunity to study the compound via electron paramagnetic resonance (EPR). Combining EPR with density functional theory (DFT) represents a powerful synergistic approach to accomplish these goals. Once the catalytic intermediates and reaction pathway are known, rate-limiting steps critical to parameters like overpotential and turnover number may be identified and eliminated. In this study 1,3,5-triphenyl verdazyl is examined using continuous-wave-EPR, electron nuclear double resonance and DFT as an instructive example of how theory and experiment can complement each other to find the reactive electron. The methods and concomitant analysis have been presented in didactic fashion and with emphasis on the strengths and weaknesses of the methods.