Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Reconstructing two-dimensional spatial modes for classical and quantum light

MPG-Autoren
/persons/resource/persons216350

Frascella,  Gaetano
International Max Planck Research School, Max Planck Institute for the Science of Light, Max Planck Society;
Chekhova Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
University of Erlangen-Nuremberg;

Kalash,  Mahmoud
Chekhova Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
University of Erlangen-Nuremberg;

/persons/resource/persons201030

Cavanna,  Andrea
Chekhova Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201034

Chekhova,  Maria V.
Chekhova Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
University of Erlangen-Nuremberg;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Averchenko, V. A., Frascella, G., Kalash, M., Cavanna, A., & Chekhova, M. V. (2020). Reconstructing two-dimensional spatial modes for classical and quantum light. Physical Review A, 102: 053725. doi:10.1103/PhysRevA.102.053725.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-8AAD-B
Zusammenfassung
We propose a method for finding two-dimensional spatial modes of thermal field through a direct measurement of the field intensity and an offline analysis of its spatial fluctuations. Using this method, in a simple and efficient way we reconstruct the modes of a multimode fiber and the spatial Schmidt modes of squeezed vacuum generated via high-gain parametric down-conversion. The reconstructed shapes agree with the theoretical results.