English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

First-order Adversarial Vulnerability of Neural Networks and Input Dimension

MPS-Authors
/persons/resource/persons204136

Simon-Gabriel,  Carl-Johann
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  Bernhard
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Simon-Gabriel, C.-J., Ollivier, Y., Schölkopf, B., Bottou, L., & Lopez-Paz, D. (2019). First-order Adversarial Vulnerability of Neural Networks and Input Dimension. In K. Chaudhuri, & R. Salakhutdinov (Eds.), Proceedings of the 36th International Conference on Machine Learning (pp. 5809-5817). PMLR. Retrieved from http://proceedings.mlr.press/v97/simon-gabriel19a.html.


Cite as: http://hdl.handle.net/21.11116/0000-0007-89FB-4
Abstract
There is no abstract available