English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Multiple sources of slow activity fluctuations in a bacterial chemosensory network

MPS-Authors
/persons/resource/persons254195

Colin,  Remy
Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254726

Sourjik,  Victor
Microbial Networks, Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;
Center for Synthetic Microbiology (SYNMIKRO);

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Colin, R., Rosazza, C., Vaknin, A., & Sourjik, V. (2017). Multiple sources of slow activity fluctuations in a bacterial chemosensory network. eLife, 6:e26796. doi:10.7554/eLife.26796.


Cite as: https://hdl.handle.net/21.11116/0000-0007-BA9F-5
Abstract
Cellular networks are intrinsically subject to stochastic fluctuations, but analysis of the resulting noise remained largely limited to gene expression. The pathway controlling chemotaxis of Escherichia coli provides one example where posttranslational signaling noise has been deduced from cellular behavior. This noise was proposed to result from stochasticity in chemoreceptor methylation, and it is believed to enhance environment exploration by bacteria. Here we combined single-cell FRET measurements with analysis based on the fluctuation-dissipation theorem (FDT) to characterize origins of activity fluctuations within the chemotaxis pathway. We observed surprisingly large methylation-independent thermal fluctuations of receptor activity, which contribute to noise comparably to the energy-consuming methylation dynamics. Interactions between clustered receptors involved in amplification of chemotactic signals are also necessary to produce the observed large activity fluctuations. Our work thus shows that the high response sensitivity of this cellular pathway also increases its susceptibility to noise, from thermal and out-of-equilibrium processes.