日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集
  このアイテムは取り下げられました。リリース履歴を表示詳細要約

取り下げ

学術論文

Emergent properties of bacterial chemotaxis pathway

MPS-Authors
/persons/resource/persons254195

Colin,  R.
Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254726

Sourjik,  V.
Microbial Networks, Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;
Center for Synthetic Microbiology (SYNMIKRO);

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Colin, R., & Sourjik, V. (2017). Emergent properties of bacterial chemotaxis pathway. Current Opinion in Microbiology, 39, 24-33. doi:10.1016/j.mib.2017.07.004.


要旨
The chemotaxis pathway of Escherichia coli is the most studied sensory system in prokaryotes. The highly conserved general architecture of this pathway consists of two modules which mediate signal transduction and adaptation. The signal transduction module detects and amplifies changes in environmental conditions and rapidly transmits these signals to control bacterial swimming behavior. The adaptation module gradually resets the activity and sensitivity of the first module after initial stimulation and thereby enables the temporal comparisons necessary for bacterial chemotaxis. Recent experimental and theoretical work has unraveled multiple quantitative features emerging from the interplay between these two modules. This has laid the groundwork for rationalization of these emerging properties in the context of the evolutionary optimization of the chemotactic behavior.