English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A Gateway-Based System for Fast Evaluation of Protein-Protein Interactions in Bacteria

MPS-Authors
/persons/resource/persons254726

Sourjik,  V.
Microbial Networks, Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;
Center for Synthetic Microbiology (SYNMIKRO);
DKFZ-ZMBH Alliance, Centre for Molecular Biology, Heidelberg;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wille, T., Barlag, B., Jakovljevic, V., Hensel, M., Sourjik, V., & Gerlach, R. (2015). A Gateway-Based System for Fast Evaluation of Protein-Protein Interactions in Bacteria. PLoS ONE, 10(4): e0123646. doi:10.1371/journal.pone.0123646.


Cite as: https://hdl.handle.net/21.11116/0000-0007-BD11-1
Abstract
Protein-protein interactions are important layers of regulation in all kingdoms of life. Identification and characterization of these interactions is one challenging task of the post-genomic era and crucial for understanding of molecular processes within a cell. Several methods have been successfully employed during the past decades to identify protein-protein interactions in bacteria, but most of them include tedious and time-consuming manipulations of DNA. In contrast, the MultiSite Gateway system is a fast tool for transfer of multiple DNA fragments between plasmids enabling simultaneous and site directed cloning of up to four fragments into one construct. Here we developed a new set of Gateway vectors including custom made entry vectors and modular Destination vectors for studying protein-protein interactions via Fluorescence Resonance Energy Transfer (FRET), Bacterial two Hybrid (B2H) and split Gaussia luciferase (Gluc), as well as for fusions with SNAP-tag and HaloTag for dual-color super-resolution microscopy. As proof of principle, we characterized the interaction between the Salmonella effector SipA and its chaperone InvB via split Gluc and B2H approach. The suitability for FRET analysis as well as functionality of fusions with SNAP- and HaloTag could be demonstrated by studying the transient interaction between chemotaxis response regulator CheY and its phosphatase CheZ.