English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effect of the Min System on Timing of Cell Division in Escherichia coli

MPS-Authors
/persons/resource/persons254422

Keilberg,  D.
Bacterial Adaption and Differentiation, Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254378

Hot,  E.
Bacterial Adaption and Differentiation, Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254759

Thanbichler,  M.
Max Planck Fellow Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254723

Sogaard-Andersen,  L.
Bacterial Adaption and Differentiation, Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Jia, S., Keilberg, D., Hot, E., Thanbichler, M., Sogaard-Andersen, L., & Lenz, P. (2014). Effect of the Min System on Timing of Cell Division in Escherichia coli. PLoS ONE, 9(8): e103863. doi:10.1371/journal.pone.0103863.


Cite as: https://hdl.handle.net/21.11116/0000-0007-BDD9-0
Abstract
In Escherichia coli the Min protein system plays an important role in positioning the division site. We show that this system also has an effect on timing of cell division. We do this in a quantitative way by measuring the cell division waiting time (defined as time difference between appearance of a division site and the division event) and the Z-ring existence time. Both quantities are found to be different in WT and cells without functional Min system. We develop a series of theoretical models whose predictions are compared with the experimental findings. Continuous improvement leads to a final model that is able to explain all relevant experimental observations. In particular, it shows that the chromosome segregation defect caused by the absence of Min proteins has an important influence on timing of cell division. Our results indicate that the Min system affects the septum formation rate. In the absence of the Min proteins this rate is reduced, leading to the observed strongly randomized cell division events and the longer division waiting times.