English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Extracellular biology of Myxococcus xanthus

MPS-Authors
/persons/resource/persons254455

Konovalova,  A.
Bacterial Adaption and Differentiation, Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254604

Petters,  T.
Bacterial Adaption and Differentiation, Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254723

Sogaard-Andersen,  L.
Bacterial Adaption and Differentiation, Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Konovalova, A., Petters, T., & Sogaard-Andersen, L. (2010). Extracellular biology of Myxococcus xanthus. FEMS Microbiology Reviews, 34(2), 89-106. doi:10.1111/j.1574-6976.2009.00194.x.


Cite as: https://hdl.handle.net/21.11116/0000-0007-C393-6
Abstract
Myxococcus xanthus has a lifecycle characterized by several social interactions. In the presence of prey, M. xanthus is a predator forming cooperatively feeding colonies, and in the absence of nutrients, M. xanthus cells interact to form multicellular, spore-filled fruiting bodies. Formation of both cellular patterns depends on extracellular functions including the extracellular matrix and intercellular signals. Interestingly, the formation of these patterns also depends on several activities that involve direct cell-cell contacts between M. xanthus cells or direct contacts between M. xanthus cells and the substratum, suggesting that M. xanthus cells have a marked ability to distinguish self from nonself. Genome-wide analyses of the M. xanthus genome reveal a large potential for protein secretion. Myxococcus xanthus harbours all protein secretion systems required for translocation of unfolded and folded proteins across the cytoplasmic membrane and an intact type II secretion system. Moreover, M. xanthus contains 60 ATP-binding cassette transporters, two degenerate type III secretion systems, both of which lack the parts in the outer membrane and the needle structure, and an intact type VI secretion system for one-step translocation of proteins across the cell envelope. Also, analyses of the M. xanthus proteome reveal a large protein secretion potential including many proteins of unknown function.