English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A model of Ustilag maydis leaf tumor metabolism

MPS-Authors
/persons/resource/persons254225

Doehlemann,  Gunther
Department of Organismic Interactions, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254818

Wahl,  Ramon
Department of Organismic Interactions, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254413

Kahmann,  Regine
Emeriti Molecular Phytopathology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254411

Kämper,  Jörg
Department of Organismic Interactions, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Horst, R. J., Doehlemann, G., Wahl, R., Hofmann, J., Schmiedl, A., Kahmann, R., et al. (2010). A model of Ustilag maydis leaf tumor metabolism. Plant Signalling & Behavior, 5(11), 1446-1449. doi:10.4161/psb.5.11.13360.


Cite as: https://hdl.handle.net/21.11116/0000-0007-C40B-0
Abstract
Extensive progress has been made in the last years in unraveling molecular mechanisms of plant-pathogen interactions. Although the main research focus lies on defense and counter-defense mechanisms, some plant-pathogen interactions have been characterized on the physiological level. Only a few studies have focused on the nutrient acquisition strategies of phytopathogens. In a previous study, we analyzed how local infection of maize leaves by the tumor-inducing fungus Ustilago maydis affects whole plant physiology and were able to show that carbon and nitrogen assimilates are rerouted to the tumor. While the sink strength of infected emerging young leaves increases with tumor development, systemic source leaves exhibit elevated export of assimilates and delayed senescence to compensate for the altered sink-source balance. Here we provide new experimental data on the metabolization of these assimilates in the tumor and propose a model on their utilization in the infected tissue.