English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

SulfoSYS (Sulfolobus Systems Biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation

MPS-Authors
/persons/resource/persons254098

Albers,  S.
Max Planck Research Group Molecular Biology of Archaea, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

Manica,  A.
Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Albers, S., Birkeland, N., Driessen, A. J., Gertig, S., Haferkamp, P., Klenk, H., et al. (2009). SulfoSYS (Sulfolobus Systems Biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation. Biochemical Society Transactions, 37, 58-64.


Cite as: http://hdl.handle.net/21.11116/0000-0007-C4F7-5
Abstract
SulfoSYS (Sulfolobus Systems Biology) focuses on the study of the CCM (central carbohydrate metabolism) of Sulfolobus solfataricus and its regulation under temperature variation at the systems level. In Archaea, carbohydrates are metabolized by modifications of the classical pathways known from Bacteria or Eukarya, e.g. the unusual branched ED (Entner–Doudoroff) pathway, which is utilized for glucose degradation in S. solfataricus. This archaeal model organism of choice is a thermoacidophilic crenarchaeon that optimally grows at 80◦C (60–92◦C) and pH 2–4. In general, life at high temperature requires very efficient adaptation to temperature changes, which is most difficult to deal with for organisms, and it is unclear how biological networks can withstand and respond to such changes. This integrative project combines genomic, transcriptomic, proteomic and metabolomic, as well as kinetic and biochemical information. The final goal of SulfoSYS is the construction of a silicon cell model for this part of the living cell that will enable computation of the CCM network. In the present paper, we report on one of the first archaeal systems biology projects.