English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Protein conformational transitions explored by mixed elastic network models

MPS-Authors
There are no MPG-Authors available
External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zheng, W., Brooks, B. R., & Hummer, G. (2007). Protein conformational transitions explored by mixed elastic network models. Proteins: Structure, Function, and Bioinformatics, 69(1), 43-57. doi:10.1002/prot.21465.


Cite as: http://hdl.handle.net/21.11116/0000-0007-8FAB-8
Abstract
We develop a mixed elastic network model (MENM) to study large-scale conformational transitions of proteins between two (or more) known structures. Elastic network potentials for the beginning and end states of a transition are combined, in effect, by adding their respective partition functions. The resulting effective MENM energy function smoothly interpolates between the original surfaces, and retains the beginning and end structures as local minima. Saddle points, transition paths, potentials of mean force, and partition functions can be found efficiently by largely analytic methods. To characterize the protein motions during a conformational transition, we follow "transition paths" on the MENM surface that connect the beginning and end structures and are invariant to parameterizations of the model and the mathematical form of the mixing scheme. As illustrations of the general formalism, we study large-scale conformation changes of the motor proteins KIF1A kinesin and myosin II. We generate possible transition paths for these two proteins that reveal details of their conformational motions. The MENM formalism is computationally efficient and generally applicable even for large protein systems that undergo highly collective structural changes.