English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Mechanism of Olefin Asymmetric Hydrogenation Catalyzed by Iridium Phosphino-Oxazoline: A Pair Natural Orbital Coupled Cluster Study

MPS-Authors
/persons/resource/persons237858

Sparta,  Manuel
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sparta, M., Riplinger, C., & Neese, F. (2014). Mechanism of Olefin Asymmetric Hydrogenation Catalyzed by Iridium Phosphino-Oxazoline: A Pair Natural Orbital Coupled Cluster Study. Journal of Chemical Theory and Computation, 10(3), 1099-1108. doi:10.1021/ct400917j.


Cite as: http://hdl.handle.net/21.11116/0000-0007-A253-4
Abstract
Since the development of chiral phosphino-oxazoline iridium catalysts, which hydrogenate unfunctionalized alkenes enantioselectively, the asymmetric hydrogenation of prochiral olefins has become important in the production of chiral compounds. For the last 10 years, details of the mechanism, including formal oxidation state assignment of the metal center and the nature of intermediates and transition states have been debated. Various contributions have been given from a theoretical point of view, but due to the size of the structures, these have been forced to rely on density functional theory (DFT) methods. In our investigation of the catalytic cycle, we employ both DFT and a correlated ab initio method, namely, the newly implemented domain-based local pair natural orbital coupled-cluster theory with single and double excitations and the inclusion of perturbative triples correction (DLPNO-CCSD(T)). Our results show that the most likely active paths involve the formation of an intermediate IrV species. Furthermore, we have been able to predict the absolute configuration of the major products, and where comparison to experiment is possible, the results of our calculations agree with the enantiomeric excess obtained from hydrogenating five prochiral substrates. This work also shows that it is now possible to study catalytic reactions with untruncated models (having up to 88 atoms) at the CCSD(T) level of theory.