Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Comparison of Density Functional and Correlated Wave Function Methods for the Prediction of Cu(II) Hyperfine Coupling Constants

MPG-Autoren
/persons/resource/persons216826

Pantazis,  Dimitrios A.
Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gómez‐Piñeiro, R. J., Pantazis, D. A., & Orio, M. (2020). Comparison of Density Functional and Correlated Wave Function Methods for the Prediction of Cu(II) Hyperfine Coupling Constants. ChemPhysChem, 21(24), 2667-2679. doi:10.1002/cphc.202000649.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-AAEB-1
Zusammenfassung
The reliable prediction of Cu(II) hyperfine coupling constants remains a challenge for quantum chemistry. Until recently only density functional theory (DFT) could target this property for systems of realistic size. However, wave function based methods become increasingly applicable. In the present work, we define a large set of Cu(II) complexes with experimentally known hyperfine coupling constants and use it to investigate the performance of modern quantum chemical methods for the prediction of this challenging spectroscopic parameter. DFT methods are evaluated against orbital‐optimized second‐order Møller‐Plesset (OO‐MP2) theory and coupled cluster calculations including singles and doubles excitations, driven by the domain‐based local pair natural orbital approach (DLPNO‐CCSD). Special attention is paid to the definition of a basis set that converges adequately toward the basis set limit for the given property for all methods considered in this study, and a specifically optimized basis set is proposed for this purpose. The results suggest that wave function based methods can supplant but do not outcompete DFT for the calculation of Cu(II) hyperfine coupling constants. Mainstream hybrid functionals such as B3PW91 remain on average the best choice.