English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Net land-use change carbon flux estimates and sensitivities - An assessment with a bookkeeping model based on the CMIP6 forcing. In open review for Earth System Dynamics

MPS-Authors
/persons/resource/persons180452

Nabel,  Julia E. M. S.
Emmy Noether Junior Research Group Forest Management in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hartung, K., Bastos, A., Chini, L., Ganzenmüller, R., Havermann, F., Hurtt, G. C., et al. (submitted). Net land-use change carbon flux estimates and sensitivities - An assessment with a bookkeeping model based on the CMIP6 forcing. In open review for Earth System Dynamics.


Cite as: http://hdl.handle.net/21.11116/0000-0007-B9CB-4
Abstract
The carbon flux due to land-use and land-cover change (net LULCC flux) historically contributed to a large fraction of anthropogenic carbon emissions while at the same time being associated with large uncertainties. This study aims to compare the contribution of several sensitivities underlying the net LULCC flux by assessing their relative importance in a bookkeeping model (BLUE) based on a LULCC dataset including uncertainty estimates (the LUH2 dataset). The sensitivity experiments build upon the approach of Hurtt et al. (2011) and compare the impacts of LULCC uncertainty (a high, baseline and low land- use estimate), the starting time of the bookkeeping model simulation (850, 1700 and 1850), net area transitions versus gross area transitions (shifting cultivation) and neglecting wood harvest on estimates of the net LULCC flux. Additional factorial experiments isolate the impact of uncertainty from initial conditions and transitions on the net LULCC flux. Finally, historical simulations are extended with future land-use scenarios to assess the impact of past LULCC uncertainty in future projections. Over the period 1850–2014, baseline and low LULCC scenarios produce a comparable cumulative net LULCC flux while the high LULCC estimate initially produces a larger net LULCC flux which decreases towards the end of the period and even becomes smaller than in the baseline estimate. LULCC uncertainty leads to slightly higher sensitivity in the cumulative net LULCC flux (up to 22 %, reference are the baseline simulations) compared to the starting year of a model simulation (up to 15 %). The contribution from neglecting wood harvest activities (up to 28 % cumulative net LULCC flux) is larger than from LULCC uncertainty and the implementation of land-cover transitions (gross or net transitions) exhibits the smallest sensitivity (up to 13 %). At the end of the historical LULCC dataset in 2014, the LULCC uncertainty retains some impact on the net LULCC flux (±0.15 PgC yr−1 at an estimate of 1.7 PgC yr−1). Of the past uncertainties in LULCC, a small impact persists in 2099, mainly due to uncertainty of harvest remaining in 2014. However, compared to the uncertainty range of the LULCC flux estimated today, the estimates in 2099 appear to be indistinguishable. These results, albeit from a single model, are important for CMIP6 as they compare the relative importance of starting year, uncertainty of LULCC, applying gross transitions and wood harvest on the net LULCC flux. For the cumulative net LULCC flux over the industrial period the uncertainty of LULCC is as relevant as applying wood harvest and gross transitions. However, LULCC uncertainty matters less (by about a factor three) than the other two factors for the net LULCC flux in 2014 and historical LULCC uncertainty is negligible for estimates of future scenarios.