English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

3D diffractive imaging of nanoparticle ensembles using an x-ray laser

MPS-Authors

Ayyer,  K.
Computational Nanoscale Imaging, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
The Hamburg Center for Ultrafast Imaging, Universität Hamburg;

/persons/resource/persons194656

Paulraj,  L. X.
Center for Free-Electron Laser Science;
The Hamburg Center for Ultrafast Imaging, Universität Hamburg;
International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS-UFAST), Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Wollweber,  T.
Computational Nanoscale Imaging, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
The Hamburg Center for Ultrafast Imaging, Universität Hamburg;
Department of Physics, Universität Hamburg;

Zhuang,  Y.
Computational Nanoscale Imaging, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

optica-8-1-15.pdf
(Publisher version), 17MB

Supplementary Material (public)

suppl.zip
(Supplementary material), 13MB

Citation

Ayyer, K., Paulraj, L. X., Bielecki, J., Shen, Z., Daurer, B. J., Samanta, A. K., et al. (2021). 3D diffractive imaging of nanoparticle ensembles using an x-ray laser. Optica, 8(1), 15-23. doi:10.1364/OPTICA.410851.


Cite as: https://hdl.handle.net/21.11116/0000-0007-9E59-4
Abstract
Single particle imaging at x-ray free electron lasers (XFELs) has the potential to determine the structure and dynamics of single biomolecules at room temperature. Two major hurdles have prevented this potential from being reached, namely, the collection of sufficient high-quality diffraction patterns and robust computational purification to overcome structural heterogeneity. We report the breaking of both of these barriers using gold nanoparticle test samples, recording around 10 million diffraction patterns at the European XFEL and structurally and orientationally sorting the patterns to obtain better than 3-nm-resolution 3D reconstructions for each of four samples. With these new developments, integrating advancements in x-ray sources, fast-framing detectors, efficient sample delivery, and data analysis algorithms, we illuminate the path towards sub-nanometer biomolecular imaging. The methods developed here can also be extended to characterize ensembles that are inherently diverse to obtain their full structural landscape.