English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Mössbauer Spectroscopy as a Probe of Magnetization Dynamics in the Linear Iron(I) and Iron(II) Complexes [Fe(C(SiMe3)3)2]1–/0

MPS-Authors
/persons/resource/persons216801

Atanasov,  Mihail
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;
Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zadrozny, J. M., Xiao, D. J., Long, J. R., Atanasov, M., Neese, F., Grandjean, F., et al. (2013). Mössbauer Spectroscopy as a Probe of Magnetization Dynamics in the Linear Iron(I) and Iron(II) Complexes [Fe(C(SiMe3)3)2]1–/0. Inorganic Chemistry, 52(22), 13123-13131. doi:10.1021/ic402013n.


Cite as: http://hdl.handle.net/21.11116/0000-0007-AB39-9
Abstract
The iron-57 Mössbauer spectra of the linear, two-coordinate complexes, [K(crypt-222)][Fe(C(SiMe3)3)2], 1, and Fe(C(SiMe3)3)2, 2, were measured between 5 and 295 K under zero applied direct current (dc) field. These spectra were analyzed with a relaxation profile that models the relaxation of the hyperfine field associated with the inversion of the iron cation spin. Because of the lifetime of the measurement (10–8 to 10–9 s), iron-57 Mössbauer spectroscopy yielded the magnetization dynamics of 1 and 2 on a significantly faster time scale than was previously possible with alternating current (ac) magnetometry. From the modeling of the Mössbauer spectral profiles, Arrhenius plots between 5 and 295 K were obtained for both 1 and 2. The high-temperature regimes revealed Orbach relaxation processes with Ueff = 246(3) and 178(9) cm–1 for 1 and 2, respectively, effective relaxation barriers which are in agreement with magnetic measurements and supporting ab initio calculations. In 1, two distinct high-temperature regimes of magnetic relaxation are observed with mechanisms that correspond to two distinct single-excitation Orbach processes within the ground-state spin–orbit coupled manifold of the iron(I) ion. For 2, Mössbauer spectroscopy yields the temperature dependence of the magnetic relaxation in zero applied dc field, a relaxation that could not be observed with zero-field ac magnetometry. The ab initio calculated Mössbauer hyperfine parameters of both 1 and 2 are in excellent agreement with the observed hyperfine parameters.