English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Properties and role of interfaces in multimaterial 3D printed composites

MPS-Authors
/persons/resource/persons122011

Weinkamer,  Richard
Richard Weinkamer, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

Article.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Zorzetto, L., Andena, L., Briatico-Vangosa, F., De Noni, L., Thomassin, J.-M., Jérôme, C., et al. (2020). Properties and role of interfaces in multimaterial 3D printed composites. Scientific Reports, 10(1): 22285. doi:10.1038/s41598-020-79230-0.


Cite as: http://hdl.handle.net/21.11116/0000-0007-A078-D
Abstract
In polyjet printing photopolymer droplets are deposited on a build tray, leveled off by a roller and cured by UV light. This technique is attractive to fabricate heterogeneous architectures combining compliant and stiff constituents. Considering the layer-by-layer nature, interfaces between different photopolymers can be formed either before or after UV curing. We analyzed the properties of interfaces in 3D printed composites combining experiments with computer simulations. To investigate photopolymer blending, we characterized the mechanical properties of the so-called digital materials, obtained by mixing compliant and stiff voxels according to different volume fractions. We then used nanoindentation to measure the spatial variation in mechanical properties across bimaterial interfaces at the micrometer level. Finally, to characterize the impact of finite-size interfaces, we fabricated and tested composites having compliant and stiff layers alternating along different directions. We found that interfaces formed by deposition after curing were sharp whereas those formed before curing showed blending of the two materials over a length scale bigger than individual droplet size. We found structural and functional differences of the layered composites depending on the printing orientation and corresponding interface characteristics, which influenced deformation mechanisms. With the wide dissemination of 3D printing techniques, our results should be considered in the development of architectured materials with tailored interfaces between building blocks.