日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Supersaturation in the Wake of a Precipitating Hydrometeor and Its Impact on Aerosol Activation

MPS-Authors
/persons/resource/persons250905

Bhowmick,  Taraprasad
Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons213007

Wang,  Yong
Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons251533

Bagheri,  Gholamhossein       
Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173472

Bodenschatz,  Eberhard       
Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Bhowmick, T., Wang, Y., Iovieno, M., Bagheri, G., & Bodenschatz, E. (2020). Supersaturation in the Wake of a Precipitating Hydrometeor and Its Impact on Aerosol Activation. Geophysical Research Letters, 47(22):, pp. 1-10. doi:10.1029/2020GL091179.


引用: https://hdl.handle.net/21.11116/0000-0007-9FDD-E
要旨
The activation of aerosols impacts the life cycle of a cloud. A detailed understanding is necessary for reliable climate prediction. Recent laboratory experiments demonstrate that aerosols can be activated in the wake of precipitating hydrometeors. However, many quantitative aspects of this wake‐induced activation of aerosols remain unclear. Here, we report a detailed numerical investigation of the activation potential of wake‐induced supersaturation. By Lagrangian tracking of aerosols, we show that a significant fraction of aerosols are activated in the supersaturated wake. These “lucky aerosols” are entrained in the wake's vortices and reside in the supersaturated environment sufficiently long to be activated. Our analyses show that this wake‐induced activation of aerosols can contribute to the life cycle of the clouds.