English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The elements of the thermodynamic structure of the tropical atmosphere

MPS-Authors

Bao ,  Jiawei
Global Circulation and Climate, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37347

Stevens,  Bjorn       
Director’s Research Group AES, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

99_2021-072.pdf
(Publisher version), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bao, J., & Stevens, B. (2021). The elements of the thermodynamic structure of the tropical atmosphere. Journal of the Meteorological Society of Japan, 99, 1483-1499. doi:10.2151/jmsj.2021-072.


Cite as: https://hdl.handle.net/21.11116/0000-0007-A216-9
Abstract
Understanding of the tropical atmosphere is elaborated around two elementary ideas, one being that density is homogenized on isobars, which is referred to as the weak temperature gradient (WTG), and the other being that the vertical thermal structure follows a moist-adiabatic lapse rate. This study uses simulations from global storm-resolving models to investigate the accuracy of these ideas. Our results show that horizontally, the density temperature appears to be homogeneous, but only in the mid- and lower troposphere (between 400 hPa and 800 hPa). To achieve a homogeneous density temperature, the horizontal absolute temperature structure adjusts to balance the horizontal moisture difference. Thus, water vapor plays an important role in the horizontal temperature distribution. Density temperature patterns in the mid- and lower troposphere vary by about 0.3 K on the scale of individual ocean basins but differ by 1 K among basins. We use equivalent potential temperature to explore the vertical structure of the tropical atmosphere, and we compare the results assuming the temperature following pseudo-adiabat and reversible-adiabat (isentropic) with the effect of condensate loading. Our results suggest that the tropical atmosphere in saturated convective regions tends to adopt a thermal structure that is isentropic below the zero-degree isotherm and pseudo-adiabatic above it. However, the tropical mean temperature is substantially colder and is set by the bulk of convection, which is affected by entrainment in the lower troposphere.