English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

New particle formation inside ice clouds: In-situ observations in the tropical tropopause layer of the 2017 Asian Monsoon Anticyclone

MPS-Authors
/persons/resource/persons101358

Weigel,  Ralf
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons145446

Mahnke,  Christoph
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100858

Borrmann,  Stephan
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Weigel, R., Mahnke, C., Baumgartner, M., Krämer, M., Spichtinger, P., Spelten, N., et al. (2021). New particle formation inside ice clouds: In-situ observations in the tropical tropopause layer of the 2017 Asian Monsoon Anticyclone. Atmospheric Chemistry and Physics Discussions, 21. doi:10.5194/acp-2020-1285.


Cite as: http://hdl.handle.net/21.11116/0000-0007-A36B-9
Abstract
From 27 July to 10 August 2017 the airborne StratoClim mission took place in Kathmandu, Nepal where eight mission flights were conducted with the M-55 Geophysica up to altitudes of 20 km. New Particle Formation (NPF) was identified by the abundant presence of ultrafine aerosols, with particle diameters dp smaller than 15 nm, which were in-situ detected by means of condensation nuclei counting techniques. NPF fields in clear-skies as well as in the presence of cloud ice particles (dp > 3 µm) were encountered at upper troposphere/lowermost stratosphere (UT/LS) levels and within the Asian Monsoon Anticyclone (AMA). NPF-generated ultrafine particles in elevated concentrations (Nuf) were frequently found together with cloud ice (in number concentrations Nice of up to 3 cm−3) at heights between ~ 11 km and 16 km. From a total measurement time of ~ 22.5 hours above 10 km altitude, in-cloud NPF was in sum detected over ~ 1.3 hours (~ 50 % of all NPF records throughout StratoClim). Maximum Nuf of up to ~ 11000 cm−3 were detected coincidently with intermediate ice particle concentrations Nice of 0.05–0.1 cm−3 at comparatively moderate carbon monoxide (CO) contents of ~ 90–100 nmol mol−1. Neither under clear-sky nor during in-cloud NPF do the highest Nuf concentrations correlate with the highest CO mixing ratios, suggesting that an elevated pollutant load is not a prerequisite for NPF. Under clear-air conditions, NPF with elevated Nuf (> 8000 cm−3) occurred slightly less often than within clouds. In the presence of cloud ice, NPF with Nuf between 1500–4000 cm−3 were observed about twice as often as under clear air conditions. When ice water contents exceeded 1000 µmol mol−1 in very cold air (< 195 K) at tropopause levels NPF was not found. This may indicate a reduction of NPF once a strong overshoot is prevalent together with the presence of mainly liquid-origin ice particles. In the presence of in-situ cirrus near the cold point tropopause very recent NPF or events of remarkable strength (mixing ratios nuf > 5000 mg−1) were rarely observed (~ 6 % of in-cloud NPF data). For specifying the constraining mechanisms for NPF possibly imposed by the microphysical properties of the cloud elements, the integral radius (IR) of the ice cloud population was identified as the most practicable indicator. Neither of both, the number of ice particles or the free distance between the ice particles, is clearly related to the NPF-rate detected. The results of a numerical simulation indicates how the IR affects the supersaturation of a condensable vapour, such as sulphuric acid, and that IR determines the effective limitation of NPF rates due to cloud ice.