Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Some results related to finiteness properties of groups for families of subgroups

MPG-Autoren
/persons/resource/persons240374

Puttkamer,  Timm von
Max Planck Institute for Mathematics, Max Planck Society;

/persons/resource/persons221893

Wu,  Xiaolei
Max Planck Institute for Mathematics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Puttkamer, T. v., & Wu, X. (2020). Some results related to finiteness properties of groups for families of subgroups. Algebraic & Geometric Topology, 20(6), 2885-2904. doi:10.2140/agt.2020.20.2885.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-A381-E
Zusammenfassung
For a group $G$ we consider the classifying space $E_{\mathcal{VC}yc}(G)$ for
the family of virtually cyclic subgroups. We show that an Artin group admits a
finite model for $E_{\mathcal{VC}yc}(G)$ if and only if it is virtually cyclic.
This solves a conjecture of Juan-Pineda and Leary and a question of
L\"uck-Reich-Rognes-Varisco for Artin groups. We then study the conjugacy
growth of CAT(0) groups and show that if a CAT(0) group contains a free abelian
group of rank two, its conjugacy growth is strictly faster than linear. This
also yields an alternative proof for the fact that a CAT(0) cube group admits a
finite model for $E_{\mathcal{VC}yc}(G)$ if and only if it is virtually cyclic.
Our last result deals with the homotopy type of the quotient space
$B_{\mathcal{VC}yc}(G) = E_{\mathcal{VC}yc}(G)/G$. We show for a poly-$\mathbb
Z$-group $G$, that $B_{\mathcal{VC}yc}(G)$ is homotopy equivalent to a finite
CW-complex if and only if $G$ is cyclic.