Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!DetailsÜbersicht

Verworfen

Vortrag

The diverse functions of calcium in natural water oxidation

MPG-Autoren
/persons/resource/persons216826

Pantazis,  Dimitrios A.
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons237685

Retegan,  Marius
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons237626

Krewald,  Vera
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons237557

Cox,  Nicholas
Research Department Lubitz, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pantazis, D. A., Retegan, M., Krewald, V., Neese, F., & Cox, N. (2014). The diverse functions of calcium in natural water oxidation. Talk presented at 12th European Biological Inorganic Chemistry Conference. Zurich, Switzerland. 2014-08-24 - 2014-08-28. doi:10.1007/s00775-014-1159-9.


Zusammenfassung
Natural water oxidation, carried out by an inorganic Mn4CaO5 cluster embedded in the enzyme photosystem II of photosynthetic organisms,
underpins all oxygenic life on earth [1]. Among the many poorly
understood aspects of this process, which serves as the ultimate blueprint
for synthetic efforts towards development of synthetic water splitting
catalysts, is the role of calcium: why does the catalyst depend critically
on calcium for its function, and why is natural water oxidation inhibited
by very similar cations, even though they may be structurally incorporated in the catalytic cluster? We address these questions by combining
recent results from spectroscopy (EPR/ENDOR), information from
kinetics measurements, and extensive theoretical modelling of photosystem II and its oxygen evolving complex [1–4]. Our results suggest that the calcium ion satisfies not one but several diverse requirements, which are electronic as much as structural in nature. Most importantly,
calcium simultaneously modulates the properties of not only the Mn4CaO5 cluster itself, but also of the redox-active tyrosine residue that mediates electron transfer from the water oxidation site to the photodriven charge separation site of the enzyme.