Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Altered N-glycan composition impacts flagella-mediated adhesion in Chlamydomonas reinhardtii

MPG-Autoren
/persons/resource/persons255518

Girot,  Antoine
Group Dynamics of fluid and biological interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons255520

Karimi,  Marzieh
Group Dynamics of fluid and biological interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons187626

Bäumchen,  Oliver
Group Dynamics of fluid and biological interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Xu, N., Oltmanns, A., Zhao, L., Girot, A., Karimi, M., Hoepfner, L., et al. (2020). Altered N-glycan composition impacts flagella-mediated adhesion in Chlamydomonas reinhardtii. eLife, 9: e58805. doi:10.7554/eLife.58805.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-A3C3-4
Zusammenfassung
For the unicellular alga Chlamydomonas reinhardtii, the presence of N-glycosylated
proteins on the surface of two flagella is crucial for both cell-cell interaction during mating and
flagellar surface adhesion. However, it is not known whether only the presence or also the
composition of N-glycans attached to respective proteins is important for these processes. To this
end, we tested several C. reinhardtii insertional mutants and a CRISPR/Cas9 knockout mutant of
xylosyltransferase 1A, all possessing altered N-glycan compositions. Taking advantage of atomic
force microscopy and micropipette force measurements, our data revealed that reduction in
N-glycan complexity impedes the adhesion force required for binding the flagella to surfaces. This
results in impaired polystyrene bead binding and transport but not gliding of cells on solid
surfaces. Notably, assembly, intraflagellar transport, and protein import into flagella are not
affected by altered N-glycosylation. Thus, we conclude that proper N-glycosylation of flagellar
proteins is crucial for adhering C. reinhardtii cells onto surfaces, indicating that N-glycans mediate surface adhesion via direct surface contact.