Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Inhibition of inorganic anion transport across the human red blood cell membrane by chloride-dependent association of dipyridamole with a stilbene disulfonate binding site on the band 3 protein

MPG-Autoren
/persons/resource/persons137771

Legrum,  Barbara
Department of Cell Physiology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons252768

Passow,  Hermann
Department of Cell Physiology, Max Planck Institute of Biophysics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Legrum, B., & Passow, H. (1989). Inhibition of inorganic anion transport across the human red blood cell membrane by chloride-dependent association of dipyridamole with a stilbene disulfonate binding site on the band 3 protein. Biochimica et Biophysica Acta-Biomembranes, 979(2), 193-207. doi:10.1016/0005-2736(89)90435-5.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-A551-3
Zusammenfassung
The inhibition of inorganic anion transport by dipyridamole (2,6-bis(diethanolamino)-4,8-dipiperidinopyrimido[5,4-d] pyrimidine) takes place only in the presence of Cl-, other halides, nitrate or bicarbonate. At any given dipyridamole concentration, the anion flux relative to the flux in the absence of dipyridamole follows the equation: Jrel = (1 + alpha 2[Cl-])/(1 + alpha 4[Cl-]) where alpha 2 and alpha 4 are independent of [Cl-] but dependent on dipyridamole concentration. At high [Cl-] the flux approaches alpha2/alpha4, which decreases with increasing dipyridamole concentration. Even when both [Cl-] and dipyridamole concentration assume large values, a small residual flux remains. The equation can be deduced on the assumption that Cl- binding allosterically increases the affinity for dipyridamole binding to band 3 and that the bound dipyridamole produces a non-competitive inhibition of sulfate transport. The mass-law constants for the binding of Cl- and dipyridamole to their respective-binding sites are about 24 mM and 1.5 microM, respectively (pH 6.9, 26 degrees C). Dipyridamole binding leads to a displacement of 4,4'-dibenzoylstilbene-2,2'-disulfonate (DBDS) from the stilbenedisulfonate binding site of band 3. The effect can be predicted quantitatively on the assumption that the Cl- -promoted dipyridamole binding leads to a competitive replacement of the stilbenedisulfonates. For the calculations, the same mass-law constants for binding of Cl- and dipyridamole can be used that were derived from the kinetic studies on Cl- -promoted anion transport inhibition. The newly described Cl- binding site is highly selective with respect to Cl- and other monovalent anion species. There is little competition with SO42-, indicating that Cl- binding involves other than purely electrostative forces. The affinity of the binding site to Cl- does not change over the pH range 6.0-7.5. Dipyridamole binds only in its deprotonated state. Binding of the deprotonated dipyridamole is pH-independent over the same range as Cl- binding.