English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks

MPS-Authors
/persons/resource/persons228449

Stutz,  David
Computer Vision and Machine Learning, MPI for Informatics, Max Planck Society;

/persons/resource/persons45383

Schiele,  Bernt
Computer Vision and Machine Learning, MPI for Informatics, Max Planck Society;

External Ressource
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Stutz, D., Hein, M., & Schiele, B. (2020). Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks. In H. Daumé, & A. Singh (Eds.), Proceedings of the 37th International Conference on Machine Learning (pp. 9155-9166). Retrieved from http://proceedings.mlr.press/v119/stutz20a.html.


Cite as: http://hdl.handle.net/21.11116/0000-0007-AA75-6
Abstract
There is no abstract available