English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Using fuzzy string matching for automated assessment of listener transcripts in speech intelligibility studies

MPS-Authors
/persons/resource/persons123625

Bosker,  Hans R.
Psychology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Bosker, H. R. (2021). Using fuzzy string matching for automated assessment of listener transcripts in speech intelligibility studies. Behavior Research Methods, 53(5), 1945-1953. doi:10.3758/s13428-021-01542-4.


Cite as: https://hdl.handle.net/21.11116/0000-0007-AAAC-8
Abstract
Many studies of speech perception assess the intelligibility of spoken sentence stimuli by means
of transcription tasks (‘type out what you hear’). The intelligibility of a given stimulus is then often
expressed in terms of percentage of words correctly reported from the target sentence. Yet scoring
the participants’ raw responses for words correctly identified from the target sentence is a time-
consuming task, and hence resource-intensive. Moreover, there is no consensus among speech
scientists about what specific protocol to use for the human scoring, limiting the reliability of
human scores. The present paper evaluates various forms of fuzzy string matching between
participants’ responses and target sentences, as automated metrics of listener transcript accuracy.
We demonstrate that one particular metric, the Token Sort Ratio, is a consistent, highly efficient,
and accurate metric for automated assessment of listener transcripts, as evidenced by high
correlations with human-generated scores (best correlation: r = 0.940) and a strong relationship to
acoustic markers of speech intelligibility. Thus, fuzzy string matching provides a practical tool for
assessment of listener transcript accuracy in large-scale speech intelligibility studies. See
https://tokensortratio.netlify.app for an online implementation.