English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites

MPS-Authors
/persons/resource/persons204389

Veenvliet,  Jesse V.
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons208926

Bolondi,  Adriano
Dept. of Genome Regulation (Head: Alexander Meissner), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons208934

Kretzmer,  Helene
Dept. of Genome Regulation (Head: Alexander Meissner), Max Planck Institute for Molecular Genetics, Max Planck Society;

Haut,  Leah
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50529

Scholze-Wittler,  Manuela
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons192460

Schifferl,  Dennis
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons73879

Koch,  Frederic
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons226424

Sampath Kumar,  Abhishek
Dept. of Genome Regulation (Head: Alexander Meissner), Max Planck Institute for Molecular Genetics, Max Planck Society;

Pustet,  Milena
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

Heimann,  Simon
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50118

Buschow,  Rene
Microscopy and Cryo-Electron Microscopy (Head: Thorsten Mielke), Scientific Service (Head: Christoph Krukenkamp), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50647

Wittler,  Lars
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50598

Timmermann,  Bernd
Sequencing (Head: Bernd Timmermann), Scientific Service (Head: Christoph Krukenkamp), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons203770

Meissner,  Alexander
Dept. of Genome Regulation (Head: Alexander Meissner), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50201

Herrmann,  Bernhard G.
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Veenvliet_2020.pdf
(Publisher version), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Veenvliet, J. V., Bolondi, A., Kretzmer, H., Haut, L., Scholze-Wittler, M., Schifferl, D., et al. (2020). Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science, 370(6522): eaba4937. doi:10.1126/science.aba4937.


Cite as: https://hdl.handle.net/21.11116/0000-0007-AB69-3
Abstract
Post-implantation embryogenesis is a highly dynamic process comprising multiple lineage decisions and morphogenetic changes that are inaccessible to deep analysis in vivo. We found that pluripotent mouse embryonic stem cells (mESCs) form aggregates that upon embedding in an extracellular matrix compound induce the formation of highly organized “trunk-like structures” (TLSs) comprising the neural tube and somites. Comparative single-cell RNA sequencing analysis confirmed that this process is highly analogous to mouse development and follows the same stepwise gene-regulatory program. Tbx6 knockout TLSs developed additional neural tubes mirroring the embryonic mutant phenotype, and chemical modulation could induce excess somite formation. TLSs thus reveal an advanced level of self-organization and provide a powerful platform for investigating post-implantation embryogenesis in a dish.