English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Gibbs sampling with people

MPS-Authors
/persons/resource/persons247689

Harrison,  Peter M. C.
Research Group Computational Auditory Perception, Max Planck Institute for Empirical Aesthetics, Max Planck Society;

/persons/resource/persons255679

Marjieh,  Raja
Research Group Computational Auditory Perception, Max Planck Institute for Empirical Aesthetics, Max Planck Society;

/persons/resource/persons225344

Adolfi,  Federico
Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Max Planck Society;

/persons/resource/persons255681

van Rijn,  Pol
Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Max Planck Society;

/persons/resource/persons251248

Anglada-Tort,  Manuel
Research Group Computational Auditory Perception, Max Planck Institute for Empirical Aesthetics, Max Planck Society;

/persons/resource/persons179725

Larrouy-Maestri,  Pauline
Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Max Planck Society;

/persons/resource/persons229764

Jacoby,  Nori
Research Group Computational Auditory Perception, Max Planck Institute for Empirical Aesthetics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

2008.02595.pdf
(Any fulltext), 8MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Harrison, P. M. C., Marjieh, R., Adolfi, F., van Rijn, P., Anglada-Tort, M., Tchernichovski, O., et al. (2020). Gibbs sampling with people. arXiv. doi:10.17605/OSF.IO/RZK4S.


Cite as: http://hdl.handle.net/21.11116/0000-0007-AB77-3
Abstract
A core problem in cognitive science and machine learning is to understand how humans derive semantic representations from perceptual objects, such as color from an apple, pleasantness from a musical chord, or seriousness from a face. Markov Chain Monte Carlo with People (MCMCP) is a prominent method for studying such representations, in which participants are presented with binary choice trials constructed such that the decisions follow a Markov Chain Monte Carlo acceptance rule. However, while MCMCP has strong asymptotic properties, its binary choice paradigm generates relatively little information per trial, and its local proposal function makes it slow to explore the parameter space and find the modes of the distribution. Here we therefore generalize MCMCP to a continuous-sampling paradigm, where in each iteration the participant uses a slider to continuously manipulate a single stimulus dimension to optimize a given criterion such as 'pleasantness'. We formulate both methods from a utility-theory perspective, and show that the new method can be interpreted as 'Gibbs Sampling with People' (GSP). Further, we introduce an aggregation parameter to the transition step, and show that this parameter can be manipulated to flexibly shift between Gibbs sampling and deterministic optimization. In an initial study, we show GSP clearly outperforming MCMCP; we then show that GSP provides novel and interpretable results in three other domains, namely musical chords, vocal emotions, and faces. We validate these results through large-scale perceptual rating experiments. The final experiments use GSP to navigate the latent space of a state-of-the-art image synthesis network (StyleGAN), a promising approach for applying GSP to high-dimensional perceptual spaces. We conclude by discussing future cognitive applications and ethical implications.