English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma

MPS-Authors
/persons/resource/persons244931

Valieva,  Maria
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

Ali ,  Salaheddine
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons194839

Schöpflin,  Robert
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons244927

Robson,  Michael
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50437

Mundlos,  Stefan
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;
Institute for Medical and Human Genetics, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;

External Ressource
No external resources are shared
Fulltext (public)

Helmsauer_2020.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Helmsauer, K., Valieva, M., Ali, S., Chamorro González, R., Schöpflin, R., Röefzaad, C., et al. (2020). Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma. Nature Communications, 2020(11): 11:5823. doi:10.1038/s41467-020-19452-y.


Cite as: http://hdl.handle.net/21.11116/0000-0007-ABAE-5
Abstract
MYCN amplification drives one in six cases of neuroblastoma. The supernumerary gene copies are commonly found on highly rearranged, extrachromosomal circular DNA (ecDNA). The exact amplicon structure has not been described thus far and the functional relevance of its rearrangements is unknown. Here, we analyze the MYCN amplicon structure using short-read and Nanopore sequencing and its chromatin landscape using ChIP-seq, ATAC-seq and Hi-C. This reveals two distinct classes of amplicons which explain the regulatory requirements for MYCN overexpression. The first class always co-amplifies a proximal enhancer driven by the noradrenergic core regulatory circuit (CRC). The second class of MYCN amplicons is characterized by high structural complexity, lacks key local enhancers, and instead contains distal chromosomal fragments harboring CRC-driven enhancers. Thus, ectopic enhancer hijacking can compensate for the loss of local gene regulatory elements and explains a large component of the structural diversity observed in MYCN amplification.