English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

On the set of divisors with zero geometric defect

MPS-Authors
/persons/resource/persons255711

Huynh,  Dinh Tuan
Max Planck Institute for Mathematics, Max Planck Society;

External Ressource
Fulltext (public)

arXiv:1907.08740.pdf
(Preprint), 247KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Huynh, D. T., & Vu, D.-V. (in press). On the set of divisors with zero geometric defect. Journal für die reine und angewandte Mathematik, Online ahead of print. doi:10.1515/crelle-2020-0017.


Cite as: http://hdl.handle.net/21.11116/0000-0007-ABF5-4
Abstract
Let $f: \mathbb{C} \to X$ be a transcendental holomorphic curve into a complex projective manifold $X$. Let $L$ be a very ample line bundle on $X$. Let $s$ be a very generic holomorphic section of $L$ and $D$ the zero divisor given by $s$. We prove that the \emph{geometric} defect of $D$ (defect of truncation $1$) with respect to $f$ is zero. We also prove that $f$ almost misses general enough analytic subsets on $X$ of codimension $2$.