Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Mechanism of Electrogenic Cation Transport by the Cloned Organic Cation Transporter 2 from Rat

MPG-Autoren
/persons/resource/persons252480

Budiman,  Thomas
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137592

Bamberg,  Ernst
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137819

Nagel,  Georg
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Budiman, T., Bamberg, E., Koepsell, H., & Nagel, G. (2000). Mechanism of Electrogenic Cation Transport by the Cloned Organic Cation Transporter 2 from Rat. The Journal of Biological Chemistry, 275(38), 29413-29420. doi:10.1074/jbc.M004645200.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-D4B7-B
Zusammenfassung
The organic cation transporter 2 (OCT2) is expressed in plasma membranes of kidney and brain. Its transport mechanism and substrates are debated. We studied substrate-induced changes of electrical current with the patch clamp technique after expression of rat OCT2 in oocytes. Activation of current, corresponding to efflux, was observed for small organic cations, e.g. choline. In contrast, the bigger cations quinine and tetrabutylammonium elicited no change in current. However, transport of choline could be inhibited by applying quinine or tetrabutylammonium to the cytoplasmic side. Inhibition of organic cation efflux by quinine was competitive with substrates. Quinine at the inside also inhibited substrate influx from the outside. Current-voltage analysis showed that both maximal turnover and apparent affinity to substrates are voltage-dependent. Substrate-induced currents with organic cations on both membrane sides reversed as predicted from the Nernst potential. Our results clearly identify the electrochemical potential as driving force for transport at neutral pH and exclude an electroneutral H+/organic cation+ exchange. We suggest the existence of an electroneutral organic cation+ exchange and propose a model for a carrier-type transport mechanism.