日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility

MPS-Authors
/persons/resource/persons255844

Gong,  An
Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Max Planck Society;

/persons/resource/persons182717

Alvarez,  Luis
Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Gadadhar, S., Alvarez Viar, G., Hansen, J. N., Gong, A., Kostarev, A., Ialy-Radio, C., Leboucher, S., Whitfield, M., Ziyyat, A., Toure, A., Alvarez, L., Pigino, G., & Janke, C. (2021). Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science, 371(6525):. doi:10.1126/science.abd4914.


引用: https://hdl.handle.net/21.11116/0000-0007-B23D-C
要旨
Posttranslational modifications of the microtubule cytoskeleton have emerged as key regulators of cellular functions, and their perturbations have been linked to a growing number of human pathologies. Tubulin glycylation modifies microtubules specifically in cilia and flagella, but its functional and mechanistic roles remain unclear. In this study, we generated a mouse model entirely lacking tubulin glycylation. Male mice were subfertile owing to aberrant beat patterns of their sperm flagella, which impeded the straight swimming of sperm cells. Using cryo–electron tomography, we showed that lack of glycylation caused abnormal conformations of the dynein arms within sperm axonemes, providing the structural basis for the observed dysfunction. Our findings reveal the importance of microtubule glycylation for controlled flagellar beating, directional sperm swimming, and male fertility.