English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Integrated analysis of Xist upregulation and gene silencing at the onset of random X-chromosome inactivation at high temporal and allelic resolution

MPS-Authors
/persons/resource/persons215466

Pacini,  Guido
Regulatory Networks in Stem Cells (Edda G. Schulz), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50140

Dunkel,  Ilona
Regulatory Networks in Stem Cells (Edda G. Schulz), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50419

Mages,  Norbert
Sequencing (Head: Bernd Timmermann), Scientific Service (Head: Christoph Krukenkamp), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons215458

Mutzel,  Verena
Regulatory Networks in Stem Cells (Edda G. Schulz), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50598

Timmermann,  Bernd
Sequencing (Head: Bernd Timmermann), Scientific Service (Head: Christoph Krukenkamp), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons145411

Schulz,  Edda G.
Regulatory Networks in Stem Cells (Edda G. Schulz), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

Pacini_2020.pdf
(Preprint), 6MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Pacini, G., Dunkel, I., Mages, N., Mutzel, V., Timmermann, B., Marsico, A., et al. (2020). Integrated analysis of Xist upregulation and gene silencing at the onset of random X-chromosome inactivation at high temporal and allelic resolution. bioRxiv (The Preprintserver for biology), 2020. doi:10.1101/2020.07.20.211573.


Cite as: http://hdl.handle.net/21.11116/0000-0007-B8FA-0
Abstract
To ensure dosage compensation between the sexes, one randomly chosen X chromosome is silenced in each female cell in the process of X-chromosome inactivation (XCI). XCI is initiated during early development through upregulation of the long non-coding RNA Xist, which mediateschromosome-wide gene silencing. Cell differentiation, Xist upregulation and silencing are thought tobe coupled at multiple levels to ensure inactivation of exactly one out of two X chromosomes. Here we perform an integrated analysis of all three processes through allele-specific single-cellRNA-sequencing. Specifically, we assess the onset of random XCI with high temporal resolution indifferentiating mouse embryonic stem cells, and develop dedicated analysis approaches. By exploitingthe inter-cellular heterogeneity of XCI onset, we identify Nanog downregulation as its main trigger and discover additional putative Xist regulators. Moreover, we confirm several predictions of thestochastic model of XCI where monoallelic silencing is thought to be ensured through negativefeedback regulation. Finally, we show that genetic variation modulates the XCI process at multiplelevels, providing a potential explanation for the long-known Xce effect, which leads to preferentialinactivation of a specific X chromosome in inter-strain crosses. We thus draw a detailed picture of thedifferent levels of regulation that govern the initiation of XCI. The experimental and computationalstrategies we have developed here will allow us to profile random XCI in more physiological contexts,including primary human cells in vivo.