Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Specific Ion‐Protein Interactions Influence Bacterial Ice Nucleation

MPG-Autoren
/persons/resource/persons140336

Kunert,  Anna T.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  Ulrich
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100944

Fröhlich-Nowoisky,  Janine
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schwidetzky, R., Lukas, M., YazdanYar, A., Kunert, A. T., Pöschl, U., Domke, K. F., et al. (2021). Specific Ion‐Protein Interactions Influence Bacterial Ice Nucleation. Chemistry – A European Journal, 27. doi:10.1002/chem.202004630.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-D31A-E
Zusammenfassung
Ice nucleation‐active bacteria are the most efficient ice nucleators known, enabling the crystallization of water at temperatures close to 0 ˚C, and thereby overcoming the kinetically hindered phase transition process at these conditions. Using highly‐specialized ice‐nucleating proteins (INPs), they can cause frost damage to plants and influence the formation of clouds and precipitation in the atmosphere. In nature, the bacteria are usually found in aqueous environments containing ions. The impact of ions on bacterial ice nucleation efficiency, however, has remained elusive. Here we demonstrate that ions can profoundly influence the efficiency of bacterial ice nucleators in a manner that follows the Hofmeister series. Weakly hydrated ions inhibit bacterial ice nucleation, whereas strongly hydrated ions apparently facilitate ice nucleation. Surface‐specific sum‐frequency generation spectroscopy and molecular dynamics simulations reveal that the different effects are due to specific interactions of the ions with the INPs on the surface of the bacteria. Our results demonstrate that heterogeneous ice nucleation facilitated by bacteria is strongly dependent upon the nature of the ions, and specific ion‐protein interactions are essential for the complete description of heterogeneous ice nucleation by bacteria.