English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Lateral mobility of the phospholipase C-activating vasopressin V1-type receptor in A7r5 smooth muscle cells: a comparison with the adenylate cyclase-coupled V2-receptor

MPS-Authors
/persons/resource/persons256144

Jans,  David A.
Emeritusgroup Physical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons252016

Peters,  Reiner
Department of Cell Physiology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons206265

Fahrenholz,  Falk
Emeritusgroup Physical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Jans, D. A., Peters, R., & Fahrenholz, F. (1990). Lateral mobility of the phospholipase C-activating vasopressin V1-type receptor in A7r5 smooth muscle cells: a comparison with the adenylate cyclase-coupled V2-receptor. The EMBO Journal, 9(9), 2693-9(9):2699. doi:10.1002/j.1460-2075.1990.tb07455.x.


Cite as: https://hdl.handle.net/21.11116/0000-0007-DC73-0
Abstract
The present work examines lateral mobility of the vasopressin V1-type receptor, representing the first determination of lateral mobility of a hormone receptor coupled to phospholipase C activation. The V1-receptor of A7r5 smooth muscle cells was characterized for [Arg8] vasopressin (AVP) binding properties and affinity for the fluorescent vasopressin analogue 1-deamino[8-lysine (N6-tetramethylrhodamylaminothiocarbonyl)] vasopressin (TR-LVP). TR-LVP was biologically active in A7r5 cells, inducing inositol 1,4,5-trisphosphate turnover in similar fashion to AVP. TR-LVP was used to specifically label the V1-receptor of living A7r5 cells, and lateral mobility of the V1-receptor was measured using the technique of fluorescence microphotolysis. The apparent lateral diffusion coefficient (D) at 37 degrees C was 5.1 x 10-10 cm2/s, falling to 2.9 x 10-10 cm2/s at 13 degrees C. These D values are higher than comparable values for the adenylate cyclase-activating vasopressin V2-receptor of LLC-PK1 renal epithelial cells analysed with the same fluorescent ligand. In contrast to the V2-receptor, no marked temperature dependence was observed for the V1-receptor mobile fraction (f). From 37 degrees C to 13 degrees C, f was relatively low (between 0.4 and 0.5) consistent with V1-receptor immobilization through internalization, which is rapid even at room temperature in A7r5 cells. These differences between V1- and V2-receptor lateral mobility are discussed in terms of the implications for their respective signal transduction systems.