English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Preprint

Combined fluorescence, optical diffraction tomography and Brillouin microscopy

MPS-Authors
/persons/resource/persons256228

Kim,  Kyoohyun
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;
Technische Universität Dresden;

/persons/resource/persons247999

Abuhattum Hofemeier,  Shada
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;
Guck Division, Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons256075

Beck,  Timon
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons248158

Müller,  Paul
Guck Division, Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society;
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons248004

Girardo,  Salvatore
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;
Guck Division, Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons241284

Guck,  Jochen
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;
Guck Division, Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society;
Technische Universität Dresden;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Schlüßler, R., Kim, K., Nötzel, M., Taubenberger, A., Abuhattum Hofemeier, S., Beck, T., et al. (2020). Combined fluorescence, optical diffraction tomography and Brillouin microscopy. bioRxiv 2020.10.30.361808.


Cite as: https://hdl.handle.net/21.11116/0000-0007-D6B9-7
Abstract
Quantitative measurements of physical parameters become increasingly important for understanding biological processes. Brillouin microscopy (BM) has recently emerged as one technique providing the 3D distribution of viscoelastic properties inside biological samples — so far relying on the implicit assumption that refractive index (RI) and density can be neglected. Here, we present a novel method (FOB microscopy) combining BM with optical diffraction tomography and epi-fluorescence imaging for explicitly measuring the Brillouin shift, RI and absolute density with molecular specificity. We show that neglecting the RI and density might lead to erroneous conclusions. Investigating the cell nucleus, we find that it has lower density but higher longitudinal modulus. Thus, the longitudinal modulus is not merely sensitive to the water content of the sample — a postulate vividly discussed in the field. We demonstrate the further utility of FOB on various biological systems including adipocytes and intracellular membraneless compartments. FOB microscopy can provide unexpected scientific discoveries and shed quantitative light on processes such as phase separation and transition inside living cells.