English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

AIDeveloper: deep learning image classification in life science and beyond

MPS-Authors
/persons/resource/persons248002

Kräter,  Martin
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;
Technische Universität Dresden;

/persons/resource/persons247999

Abuhattum Hofemeier,  Shada
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;
Technische Universität Dresden;

/persons/resource/persons248161

Soteriou,  Despina
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;

Jacobi,  Angela
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;
Technische Universität Dresden;

/persons/resource/persons241284

Guck,  Jochen
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;
Technische Universität Dresden;
Max-Planck-Zentrum für Physik und Medizin, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons256230

Herbig,  Maik
Guck Division, Max Planck Institute for the Science of Light, Max Planck Society;
Technische Universität Dresden;

External Resource
No external resources are shared
Fulltext (public)

AdvScience_2021_Krater_AIDeveloper.pdf
(Publisher version), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Kräter, M., Abuhattum Hofemeier, S., Soteriou, D., Jacobi, A., Krüger, T., Guck, J., et al. (2021). AIDeveloper: deep learning image classification in life science and beyond. Advanced Science, 2003743. doi:10.1002/advs.202003743.


Cite as: http://hdl.handle.net/21.11116/0000-0007-D720-2
Abstract
Artificial intelligence (AI)‐based image analysis has increased drastically in recent years. However, all applications use individual solutions, highly specialized for a particular task. Here, an easy‐to‐use, adaptable, and open source software, called AIDeveloper (AID) to train neural nets (NN) for image classification without the need for programming is presented. AID provides a variety of NN‐architectures, allowing to apply trained models on new data, obtain performance metrics, and export final models to different formats. AID is benchmarked on large image datasets (CIFAR‐10 and Fashion‐MNIST). Furthermore, models are trained to distinguish areas of differentiated stem cells in images of cell culture. A conventional blood cell count and a blood count obtained using an NN are compared, trained on >1.2 million images, and demonstrated how AID can be used for label‐free classification of B‐ and T‐cells. All models are generated by non‐programmers on generic computers, allowing for an interdisciplinary use.